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ABSTRACT
Current public transport journey planners are mostly based on timetables, i.e.,
their planning assumes implicitly that all transit vehicles run on schedule.
Unfortunately, unpredictable delays occur frequently which may have a
negative impact on the quality of the journeys provided by timetable-based
planners. In this paper, we check solutions for mitigating this problem
and evaluate them empirically on the metropolitan public transportation
network of Rome (Italy). We first try to assess whether the availability of
dynamic information on the geo-location of transit vehicles (via GPS data)
may help to improve the quality of the journeys offered by a planner. The
main findings of our experiments are that GSP data provides substantial
benefits for short journeys, while it does not seem to provide enough insight
to improve long journeys. In particular, even with the use of GPS data, a
journey planner can still be rather unreliable for long journeys, as there can
be large fluctuations between the times predicted by the planner and the
actual travel times incurred by passengers. As a second contribution of our
work, we provide and evaluate experimentally new routing algorithms to
improve the reliability of public transport journey planners.

1. INTRODUCTION
We consider the problem of finding journeys in metropolitan

schedule-based public transit networks where delays occur. Re-
cently, some cities have equipped all buses with GPS devices to
collect their current positions in real time. Leveraging this GPS feed,
it enables the transit agency to have an almost complete overview of
the current traffic situation throughout the city. While some agencies
expose this data to the user (e.g., via their websites to warn about
potentially missed connections), it is usually not used within the
journey planner itself, with the result that recommended journeys
may lead to missed transfers and late arrivals.
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In this paper we study how to improve the quality of a journey
planning system by taking GPS feeds into account in the planning
stage. We first check the quality of journeys computed according
to the timetable (which ignores delays). We then show how to
incorporate the real-time GPS feed of the current traffic situation
into the timetable (also predicting the near future) and evaluate
the effect on journey quality. We also develop a novel extension
for RAPTOR (a state-of-the-art journey planning algorithm [9]),
making the computed journeys more robust to delays. Our extensive
experimental study on the real GPS feed from Rome, Italy reveals
that we are able to improve the quality of the planned journeys.

To the best of our knowledge, we are among the first to use GPS
data to improve a public transport journey planning system. There
has been work on efficient algorithms for journey planning [2, 9,
11, 20] (see [3] for a survey). Our findings in this work translate
to other journey planning systems easily, as long as they do not
rely on heavy preprocessing. The robustness to delays of journeys
has been studied in [4, 13], with the obvious result: As long as the
delays are minor, computing journeys according to the timetable is
sufficiently good. However, preliminary experiments with produc-
tions systems such as Google Transit (www.google.com/transit)
or Muovi Roma (http://www.agenziamobilita.roma.it) in-
dicate that, when deviations from the schedule become significant,
incorporating delays would indeed benefit the quality of the com-
puted journeys [1].

Making journey planning algorithms more robust to heavy delays
has been studied before [7,12,14,15,18,19], but none of these papers
has considered GPS feeds. An important building block for our work
is to predict the near future from the current traffic situation. Some
previous work [6,19] focused only on how delays propagate through
a train network if one train is delayed and others are waiting to avoid
missed connections. Previous work with GPS data [5, 16, 17, 21]
focused on improving the prediction of travel times in metropolitan
transport networks, but did not evaluate whether it can improve a
journey planner for public transportation.

2. PRELIMINARIES
We work with aperiodic timetables, which consist of a set S of

stops, a set R of routes, a set T of trips, and a set F of footpaths.
Each stop p ∈S represents a distinct location at which one can
board or exit a vehicle (such as a bus stop or a subway platform).
Each trip t ∈T is a sequence of stops a particular vehicle follows
during the day. Every stop p ∈ t along the trip has an associated
arrival and departure time τarr(t, p) and τdep(t, p), where τarr(t, p)≤



τdep(t, p). Trips that follow the same sequence of stops without
overtaking each other are grouped into routes r ∈ R, ordered by
their departure time at the first stop. Finally, each footpath f =
(p1, p2, `) ∈F enables walking from stop p1 to stop p2 in time `.

The output of a journey planning algorithm is a set of journeys J .
A journey J ∈J is a sequence of trips and footpaths in order
of travel. Every trip t ∈ J has associated stops for pick-up and
drop-off with their corresponding departure and arrival times. A
journey with k trips has k−1 transfers, and its travel time τtrav(J)
is the difference τarr(J)− τdep(J) of its arrival and departure times.
Moreover, we assign each journey several criteria x(J), such as its
arrival time and number of transfers. A journey J1 dominates a
journey J2, if J1 is better (or equal) in all criteria than journey J2.
Given source and target stops ps and pt , a departure time τdep and
several optimization criteria, we are interested in computing a Pareto
set of journeys J optimizing the given criteria. More precisely,
each journey J ∈J must leave ps no earlier than τdep, terminate
at pt , and no two journeys J1,J2 ∈J may dominate each other.

The recent RAPTOR algorithm [9] efficiently computes Pareto
sets of journeys optimizing arrival time and number of transfers. It
works in rounds, computing in round i earliest arrival times for all
stops that can be reached with i trips (i−1 transfers). It maintains for
each stop p and round i a label τi(p) (initially set to ∞), the earliest
arrival time to get to p with i trips. The algorithm initializes τ0(ps)=
τ (recall that τ is the departure time at the source stop ps, given
as input). For each round i, beginning with i = 1, it first copies all
labels τi(·) = τi−1(·), and then scans all routes hit by a stop whose
label has been updated in the previous round (for the first round
this is only ps). To scan a route r, RAPTOR maintains a tentative
trip t (which is initially undefined) traversing the stops of the route
in order. At every stop p, it first checks whether τarr(t, p)< τi(p),
in which case it sets τarr(t, p) = τi(p) (think of this as leaving trip t
at stop p). It then attempts to update the tentative trip: if τi−1(p)<
τdep(t, p), it sets t to be the earliest possible trip of route r that
departs p after τi−1(p) (think of this as boarding trip t at p). The
algorithm terminates if no labels have been updated in a round,
resulting in a provably exact Pareto set at every stop. In case one
is only interested in a target stop pt , target pruning accelerates
the algorithm by pruning journeys (anywhere) in the network that
provably do not contribute to the Pareto set at pt .

RAPTOR can be extended to McRAPTOR [9] to incorporate
further optimization criteria (beyond arrival time and number of
transfers). It still works in rounds, but it maintains with each stop p
and round i a bag Bi(p) of nondominated labels (journeys). (Be-
sides arrival time, these label have associated values for each further
criterion.) To scan a route r, McRAPTOR must maintain a tentative
bag B of labels with associated trips. At each stop p along the route,
it first merges B into Bi(p): it updates all affected criteria (e. g., the
arrival time) of the labels of B and copies them into Bi(p), remov-
ing dominated labels on the fly. Similarly, it then merges Bi−1(p)
into B, assigning (earliest trips) to each newly-added label of B. The
algorithm terminates after round i if no new labels have been added
to any bag Bi(·) in round i, resulting in exact Pareto sets of journeys
at each stop. If one is only interested in journeys to a target stop pt ,
target pruning can be extended to McRAPTOR, as well.

3. METHODOLOGY
In this section we describe how we collect GPS data, how we

evaluate the quality of a journey with it, and our experimental setup.
We collected GPS data from transit agency of Rome. For each

bus in the network, we gathered the route on which it is operating,
the relative position of the bus in the considered route, and the time
of the last GPS update for the given bus. If the GPS stream was

incomplete for a bus (due to connection loss) we simply interpolated.
Our simulation system is able to simulate the experience of a

user traveling according to the solution reported by a journey plan-
ner. Analyzing the GPS data, it computes the actual arrival time
of the user at their destination. From this we compute the travel
time τtrav(J) of the journey J as the difference between the actual
arrival time and the time at which the query was issued. Note that
we collect GPS data only for buses, and thus assume that subways
operate according to the timetable (a reasonable assumption).

We define the prediction error of a journey J as the absolute
value of the relative error of the time estimates, i.e., |τ̃trav(J)−
τtrav(J)|/τtrav(J), where τ̃trav(J) and τtrav(J) are, respectively, the
estimated and the actual travel times of the journey J. We consider
the absolute value of the relative error, since we are interested in
evaluating how far the time estimates are from the actual times, inde-
pendently of the fact that the error is due to optimistic or pessimistic
predictions. If the estimated arrival time is exactly the same as the
actual arrival time, the quality measure is 0.

We define the best journey time as the actual time required by
the best journey J∗ answering q, computed taking into account
the complete GPS stream of the full day in advance. This is a
particularly important parameter, since it provides a lower bound for
the quality of computed journeys. We define the distance from the
best of a journey J as τtrav(J)− τtrav(J∗). If the considered journey
is the fastest solution, this value is 0.

We consider the public transport network of the metropolitan
area of Rome. It consists of 309 bus lines and 2 subway lines,
involving a total of 7,089 stops (7,037 bus stops and 52 subway
stops). We implemented all algorithms in C++, compiled with GCC
4.5, and evaluated them on an Intel Core i7 CPU. We compute
a set of 5,000 queries with origin and destination stops chosen
uniformly at random. We choose departure times uniformly at
random in the time range 7:30 am to 7 pm. We use the GPS data of
Wednesday, February 26, 2014, a typical day with no unusual traffic
jams, construction works or extreme weather conditions.

We then run the same queries with all considered algorithms
and collect the returned journeys together with their time estimates.
For each such journey, we use our simulation system to compute its
actual time, computing the quality measures from above. Given a set
of journeys, we compare the performances of different algorithms
by the median, 10th and 90th percentile for each quality measure.
As we consider the lowest and the highest 10% of values as outliers,
we can focus on the most reliable 80% of the measurements. We
distinguish between short (less than 30 minutes), mid (30 to 60) and
long (longer than 60) range journeys.

4. IGNORING THE GPS FEED
First, we evaluate the impact of traffic on journey quality, if

they are obtained without leveraging GPS data. For this, we run
RAPTOR on the normal timetable, and only use our GPS data to
evaluate the journey quality after computing them. We first consider
plain RAPTOR, which we call RAPTOR(TT) to make clear that it
runs on the original timetable. RAPTOR returns a set of journeys
from which we pick the one with earliest arrival time.

Figure 1 (left) illustrates the prediction error of RAPTOR(TT) as a
function of the journey time estimated by the algorithm. In this plot,
the x-axis is divided into time slots of 5 minutes: for each time slot,
we report the value of the prediction error for all the journeys falling
in that range, together with their median, 10th and 90th percentile.
We observe that in 50% of the cases, the time estimates computed
by RAPTOR(TT) can be affected by a considerable prediction error,
which is more than 20% for mid and long range journeys, and of the
order of 30% for small range journeys. Higher relative errors for
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Figure 1: Prediction error (left) and distance from the best
(right) of journeys computed by RAPTOR(TT).

short range journeys can be explained by the fact that even small
delays can yield relatively large fluctuations in the prediction error.

Figure 1 (right) illustrates the distance from the best of the same
journeys, as a function of the best journey time. As we see, in several
cases the solutions provided by RAPTOR(TT) can be substantially
far away from the best possible solution.

Next, we check whether we can improve the route quality by
optimizing transfer reliability [12]. The reliability of a transfer
from trip t1 to trip t2 is a function (called rel) of the transfer’s
buffer time (i. e., τdep(t2, p)− τarr(t1, p)) to the interval [0,1]. (Note
that the buffer time indicates by how much t1 may be delayed
at p before t2 is missed.) We use an exponential function to model
reliability, that is, rel(τ) = eln(1−a)−b/τ . In our experiments we set a
and b such that rel(0min) = 0.5 and rel(10min) = 0.99. For better
performance, we subdivide the codomain of rel into 100 equivalence
classes of equal width. The reliability of a journey J is now the
product over the reliabilities of each individual transfer in J.

We use the RcRAPTOR algorithm (Reliability Criterion RAP-
TOR) to compute Pareto sets optimizing arrival time, number of
transfers, and reliability [10]. It is essentially identical to McRAP-
TOR (using pairs of arrival time and reliability as labels), however,
with one distinction: Whenever it attempts to merge a bag Bi−1(p)
into the tentative route bag B (while scanning route r at stop p),
it may create multiple new nondominated labels with associated
trips for every label L ∈ Bi−1(p). Besides the earliest trip departing
after τarr(L), RcRAPTOR must consider all subsequent (later) trips
that may provide a higher reliability (at the cost of arriving later).
The algorithm produces a Pareto set of journeys that differently trade
reliability for arrival time (besides number of transfers). For the
following study, we restrict ourselves to picking one journey (per
round i) from the Pareto set a posteriori. RcRAPTOR-MR picks
the journey with maximum reliability while RcRAPTOR-AVG picks
the one whose reliability is closest to the average reliability (of all
journeys computed).

Figure 2 (left) shows that taking the reliability of transfers explic-
itly into account (as RcRAPTOR does) seems a crucial asset for
computing more reliable time estimates. Indeed, both variants of
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Figure 2: Prediction error (left) and distance from the best
(right) of journeys computed by RAPTOR(TT), RcRAPTOR-
MR(TT) and RcRAPTOR-AVG(TT).

RcRAPTOR significantly outperform RAPTOR(TT) in terms of the
accuracy of time estimates (prediction error).

Figure 2 (right) illustrates the distance from the best for the same
journeys. Beside the general improvement of the RcRAPTOR algo-
rithms over RAPTOR, two points are interesting. Firstly, for very
short journeys RAPTOR(TT) appears to be closer to the optimum
than either RcRAPTOR-MR(TT) or RcRAPTOR-AVG(TT). This
is due to the fact that RcRAPTOR optimizes reliability, and hence
prefers longer journeys with larger (thus, more reliable) waiting
times for transfers. In this case, the impact of longer waiting times
might be more noticeable on very short journeys. Note that for
mid to long range journeys, which tend to involve more transfers,
the reliability introduced by the RcRAPTOR variants produce a
significant improvement over RAPTOR(TT).

Secondly, Figure 2 (right) indicates that RcRAPTOR-MR(TT)
is closer to the optimum than RcRAPTOR-AVG(TT), especially
for mid and long range journeys. As previously observed, those
journeys involve more transfers, and missing one transfer introduces
delays in the journey. In this case, always selecting the journey with
maximum reliability pays off.

5. USING THE GPS FEED
The experiments from the previous section show that the reliable

approach taken by RcRAPTOR over basic RAPTOR introduces
effective protection against delays and other deviations from the
original schedule. It seems natural to ask whether one could obtain
even further improvements by taking explicitly into account the dy-
namic information about the geographic location of transit vehicles,
available through GPS data. This is explored in this section.

5.1 Traffic Prediction
Algorithms in the RAPTOR family, like most of the public trans-

port routing algorithms, expect their input in form of a timetable,
which completely describes future departure and arrival events of all
vehicles. In contrast, GPS data provides very detailed information
about past events, but gives very little information about the future.
Namely, let τ be a given time at which a query is issued to the
algorithm. The GPS data indicates how all transit vehicles moved in
the network before or at time τ , but in order to answer the query we
also need to predict the positions of the vehicles after time τ .

Since this is not the main focus of our work, we consider a very
simple predictive model in our experiments. In particular, we assume
that the average speed of transit vehicles on a given route observed
before time τ provides a good approximation of the future speed
of vehicles on the very same route. More precisely, we consider
the speed of vehicles along each hop h = (pi, pi+1) of its trip, i.e.,
between stop pi and its consecutive stop pi+1. Whenever we receive
new GPS data, we update the (average) speed for each affected hop.
By these means, we can predict the arrival times for each vehicle at
future stops. For trips (vehicles) which are not yet in operation (at
the current time τ), we assume that they will depart from their first
stop according to the timetable and will proceed according to current
speed estimations.

5.2 RAPTOR
To assess the impact of GPS data on the journeys computed by

RAPTOR-based algorithms, we start our experiments by comparing
RAPTOR(TT) and RAPTOR(GPS) (i.e., RAPTOR running on GPS
data). In particular, Figure 3 (left) illustrates the prediction error of
the journeys computed by RAPTOR(TT) and by RAPTOR(GPS) as
a function of the estimated journey time. Since GPS data seems to
provide more reliable information than timetable data, one would
expect that its usage could substantially improve the accuracy of
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Figure 3: Prediction error (left) and distance from the best
(right) of journeys computed by RAPTOR(TT) and RAP-
TOR(GPS).

the time estimates used by the journey planner. However, although
there are improvements for short journeys, for mid and long range
journeys there seems to be no substantial difference in the time
estimates produced with GPS data and with timetable data. Note
that our prediction model is rather simple; perhaps, one could im-
prove the prediction error for longer-range journeys with a more
sophisticated model.

Our experiments highlight that the main impact of GPS data
depends on the pick-up time of the first bus: the sooner (after the
time the query is issued) the first bus is taken, the more effective
GPS data seems to be in improving the prediction error. This is
intuitive: if the user has to catch a bus in a few minutes, then GPS
data is more accurate; on the other hand, if the user is first taking a
long subway trip before transferring to a bus, the predicted delays
from the (current) GPS data are likely to be much less acurate.

To show this phenomenon, we present in Figure 4 a different
visualization of the results of the experiment illustrated in Figure 3
(left): this time, the x-axis represents the pick-up time of the first
bus along the journey computed using GPS data, and the y-axis
represents the difference τtrav(Jtt)− τtrav(JGPS) between the actual
time of the journey computed using timetable data and the one using
GPS data. Obviously, positive points in the plot (i.e., τtrav(Jtt)−
τtrav(JGPS) > 0) represent a positive impact of GPS data, while
negative points represent a negative impact of GPS data. Queries
returning the very same journey, both, for GPS and for timetable
data are excluded from Figure 4, since they do not provide insight
into the differences between the use of GPS and timetable data.

As we observe from Figure 4, the effectiveness of GPS data
decreases consistently with the pick-up time of the first bus: in
particular, we see a positive effect when the pick-up time of the first
bus is at most 50 minutes along the journey, a negative effect for
more than 70 minutes, and a neutral effect in between.

In summary, although with our simple prediction model, GPS
data improves the accuracy of the time estimates mostly for short
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Figure 4: RAPTOR(TT) compared to RAPTOR(GPS). The dif-
ference between the actual times of journeys computed using
both timetable and GPS data is plotted as a function of the pick-
up time of the first bus (better viewed in color).

journeys, it can nevertheless provide better solutions than timetable
data for journeys where the pick up of the first bus is not too far
in the future. We thus expect that the benefits of GPS data are not
confined to short range journeys only, but also carry over to mid
and long range journeys with an early pick-up time of the first bus.
Indeed, as illustrated in Figure 3 (right), which reports the distance
from the best of the journeys computed by RAPTOR(TT) and RAP-
TOR(GPS), GPS data seems to provide solutions slightly closer to
the optimum than timetable data, even for long-range journeys.

5.3 Reliablity
Next, we again consider reliability. Namely, we compare RAP-

TOR(GPS), RcRAPTOR-AVG(GPS) and RcRAPTOR-MR(GPS)
to evaluate the impact of optimizing reliability on the basis of GPS
data. Figure 5 reports the results analogously to Figure 2, but now
for GPS data. As for the case of timetable data, the RcRAPTOR
variants with GPS data provide substantial improvements over RAP-
TOR(GPS): taking reliability of transfers explicitly into account
is beneficial for computing more reliable time estimates and for
obtaining solutions that are closer to the optimum. We note that the
usage of GPS data seems to mitigate one issue that we mentioned
for the experiment reported in Figure 2 (right). Differently from
timetable data, for very short journeys now RcRAPTOR-MR(GPS)
and RcRAPTOR-AVG(GPS) appear to be closer to the optimum
than RAPTOR(GPS). Using GPS data seems to compensate the pre-
viously mentioned conservative effect of RcRAPTOR in penalizing
journeys with short waiting times.

In summary, our experiments with RAPTOR and RcRAPTOR
show that GPS data is likely to be beneficial especially for short
journeys, while it does not seem to provide enough insight to sub-
stantially improve the quality of long journeys. Indeed, for the case
of short journeys, the use of GPS data is able to, both, increase
the accuracy of the time estimates, and decrease the distance of the
solutions provided from the optimum. In contrast, for long jour-
neys the use of GPS data does not seem to offer any substantial
advantage over timetable data (both in terms of prediction error and
distance from the best). However, RcRAPTOR seems to produce
improved solutions over RAPTOR (for timetable data as well as
GPS data), especially for mid and long range journeys. In particular,
long journeys obtained by RcRAPTOR-MR(GPS) or RcRAPTOR-
AVG(GPS) take on average about 10% longer than their original
estimate, while the same journeys obtained by RAPTOR(GPS) take
an average of 20% longer than their original estimate. Further im-
proving the reliability of the solutions provided by a journey planner
may be particularly important, as some users might be willing to
trade time for greater reliability, i.e, they might prefer to complete
their journey in slightly more time but with a stronger guarantee to
reach the final destination by a given deadline.
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Figure 5: Prediction error (left) and distance from the best
(right) of journeys computed by RAPTOR(GPS), RcRAPTOR-
MR(GPS) and RcRAPTOR-AVG(GPS).



6. INCREASING ROBUSTNESS
Motivated by the discussion above, we now introduce a new

RAPTOR-based algorithm, which aims to reduce the prediction
error, i.e., to improve the accuracy of the time estimates.

We refer to the event of missing a scheduled transfer during a
journey as a fault. Note that a fault can happen in case of a mismatch
between predicted and actual times: an incoming transit vehicle
may arrive too late at a given stop (with respect to its predicted
arrival) or an outgoing transit vehicle may depart too early from a
given stop (with respect to its predicted departure). For the sake of
simplicity, we assume that users always follow the journeys offered
by the planner, i.e., whenever a fault occurs, the user simply waits
for the next transit vehicle on the same route and does not deviate
from the journey. The occurrence of a fault may clearly cause
further delays. We associate to each fault the resulting delay caused
in the journey, when only that fault occurs. We refer to the fault
in a journey causing the largest delay as its worst fault. Intuitively,
we would like to have routing algorithms that are robust against
worst faults, i.e., they return journeys where worst faults produce
small delays. Note that those algorithms are likely to be effective in
practice as long as at most one fault can happen during a journey.

6.1 Extending RAPTOR
We now propose 1-Fault-Aware RAPTOR, a new algorithm which

aims at being robust against worst faults. Similarly to McRAP-
TOR, 1-Fault-Aware RAPTOR is based on multicriteria optimization
through Pareto optimality. However, differently from RcRAPTOR,
1-Fault-Aware RAPTOR does not consider the reliability of trans-
fers, but rather tries to minimize the largest possible delay in case of
one missed transfer.

Similarly to RAPTOR, in round i it computes for every stop p the
earliest arrival time at p when using at most i trips (i−1 transfers),
denoted by τi(p). In addition, it explicitly considers the arrival time
for the case that the worst fault just occured before stop p, denoted
by τwf

i (p). We now sketch the modifications required for RAPTOR.
Let q = (ps,τ, pt) be a query where ps is the origin stop, τ the
departure time, and pt the destination stop.

We first initialize both τ(ps) and τwf(ps) to τ , since at time τ

the journey starts from the origin. At the end of the first round, we
compute the best journeys (according to Pareto optimality) to get
to every reachable stop p with exactly one trip. To this end, we
compute τ(p), i.e., the earliest arrival time to p if no fault occurs,
and we set τwf(p) to the arrival time at p if we miss the first avail-
able vehicle to p on the only route considered in the journey. For
rounds i > 1, 1-Fault-Aware RAPTOR works as follows. If one
more trip (with respect to the previous round) reaches a new stop, it
works exactly as in the first iteration. Otherwise, if using one more
trip departing from a stop p0 of the computed journey leads to an
already reached stop p′, we compute the new solution and we update
the non-dominating set of solutions leading to p′ according to Pareto
optimality. To this end, we need to compute both τ(p′) and τwf(p′),
i.e., the earliest arrival time to p′ if, respectively, no fault or the
worst fault occurs. The value τ(p′) can be easily computed exactly
as for basic RAPTOR (cf. Section 2). To compute τwf(p′), i.e., the
arrival time at p′ if the worst fault occurs, we use the following
formula: τwf(p′) = max{τ f(p̃0, p′),τ f(p0, p̃′)}, where τ f(p̃0, p′)
and τ f(p0, p̃′) are, respectively, the arrival time if a fault occurred
before p0 or at p0. Recall that p0 is the stop from which the new
transit vehicle departs during the current round, and that at most one
fault can occur.

When the algorithm terminates, it obtains a set of nondominating
journeys leading to pt . Among these journeys, 1-Fault-Aware RAP-
TOR returns the one with the lowest difference between τwf(pt)
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Figure 6: Prediction error (left) and distance from the best
(right) of journeys computed by RcRAPTOR-AVG(GPS) and
1-Fault-Aware RAPTOR(GPS), keeping RAPTOR(TT) as our
baseline.

and τ(pt). Notice that this choice does not guarantee that we are
selecting the fastest journey.

6.2 Results
Next, we report the results from our experiments with 1-Fault-

Aware RAPTOR(GPS). Compared to the other algorithms consid-
ered so far, one expects that the journeys provided by 1-Fault-Aware
RAPTOR(GPS) have more reliable time estimates which could be
at the same time further away from the best possible journeys. In
other terms, 1-Fault-Aware RAPTOR(GPS) is expected to deliver
slower but more reliable journeys, by improving the prediction error
at the expense of worsening the distance from the best. Figure 6
illustrates the results of our experiments with 1-Fault-Aware RAP-
TOR(GPS). To put those results in perspective, we include in the
same plot the results of the same experiment with the best and
the worst algorithm resulting from our experiments, respectively
RcRAPTOR-AVG(GPS) and RAPTOR(TT).

We first analyze the prediction error of the three algorithms,
shown in Figure 6 (left). As expected, 1-Fault-Aware RAPTOR(GPS)
is able to deliver more reliable solutions in case of mid to long range
journeys. In particular, long journeys suggested by RcRAPTOR-
AVG(GPS) take on average about 10% more than their original
estimate, while the estimates on the long journeys suggested by
1-Fault-Aware RAPTOR(GPS) appear to be more reliable: indeed,
in this case a journey takes an average of only about 2% more than
its original estimate. We note that 1-Fault-Aware RAPTOR(GPS)
does not seem to be able to provide reliable solutions for very short
journeys. The main reason for this is that 1-Fault-Aware RAP-
TOR(GPS) is not likely to provide very short journeys: as a con-
sequence, in our experiments with 1-Fault-Aware RAPTOR(GPS)
there are only few points corresponding to journeys with estimated
time less than 20 minutes, which do not seem to be statistically
significant. Additionally, the same relative error appears to be more
relevant in practice for long journeys rather than for short journeys:
a 20% relative error on an estimated journey time of 15 minutes,
yields an actual delay of 3 minutes, while a 20% relative error on
an estimated journey time of 90 minutes yields an actual delay
of 18 minutes.

We next analyze the distance from the best of the solutions pro-
vided by the three algorithms, as illustrated in Figure 6 (right). As
expected, the improved reliability in the time estimates of 1-Fault-
Aware RAPTOR(GPS) comes at the cost of a larger distance from
optimality. However, the resulting performance degradation does
not appear to be significant: indeed, the journeys provided by 1-
Fault-Aware RAPTOR(GPS) are about only 5 minutes slower on
average than the journeys provided by RcRAPTOR-AVG(GPS), and
seem to be very close to the journeys provided by RAPTOR(TT).



Figure 7: Distribution of the solutions computed by RAP-
TOR(TT), RcRAPTOR-AVG(GPS) and 1-Fault-Aware RAP-
TOR(GPS), with respect to both the prediction error and the
distance from the best.

In summary, compared to RcRAPTOR-AVG(GPS), 1-Fault-Aware
RAPTOR(GPS) seems to provide journeys with more reliable esti-
mates (2% on average, compared to 10%) that are only 5 minutes
slower on average.

Figure 7 further analyzes the tradeoffs between reliability of the
estimates and distance from optimality, by plotting the distribution
of journeys computed by 1-Fault-Aware RAPTOR(GPS), compared
to RcRAPTOR-AVG(GPS) and RAPTOR(TT). The x-axis repre-
sents the distance from the best, while the y-axis represents the
prediction error: each journey is thus represented by a point on this
plane. We divided the plane into small regions and considered, for
each algorithm, the number of journeys falling into each region. We
discarded regions with very low density of points, until we removed
about 10% of them, which were considered as outliers. The remain-
ing 90% of the points highlight contiguous regions describing, for
each algorithm, in which part of the plane the solutions are likely to
fall with high probability.

In theory, one would like to achieve both a small distance from
the best and a small prediction error, so an ideal algorithm would
concentrate its solutions around the origin of this plane. Points close
to the x-axis represent journeys that are robust but not necessarily
fast: i.e., with strongly reliable time estimates, but not necessarily
close to the optimum. Similarly, points close to the y-axis represent
journeys which are fast but not necessarily robust: i.e., close to the
optimum, but not necessarily with reliable time estimates. Points
far away from the origin along the bisector of the first quadrant
represent low quality solutions: the further away they are from the
origin, and the lower their accuracy in estimates and the larger their
distance from optimality.

As we see from Figure 7, the low quality of the journeys provided
by RAPTOR(TT) is highlighted by a tendency to concentrate its
solutions mostly along the bisector. On the other side, the improve-
ment introduced by RcRAPTOR-AVG(GPS) over RAPTOR(TT)
is witnessed by the fact that most of its journeys are roughly con-
tained in a ball centered in the origin. In this framework, the main
difference between 1-Fault-Aware RAPTOR(GPS) and RcRAPTOR-
AVG(GPS) is that 1-Fault-Aware RAPTOR(GPS) tends to spread its
solutions more towards the x-axis, thereby providing journeys which
seem to be inherently more robust and less vulnerable to delays,
at the cost of increasing their travel times (measured in terms of
distance from optimality).

7. CONCLUSIONS
We studied how to improve a journey planning system for a

metropolitan area with an available live GPS feed from all vehicles in
the network. We evaluated the quality of the obtained journeys if we
ignore the feed, and the amount we gain in quality by incorporating

the feed into the journey planning system. We tested RAPTOR
together with known and novel extensions. The key insight of our
work is that we can improve the quality of the journeys computed,
especially for short range queries. As for future work, we believe
that one can also improve the results for long range queries by
exploiting the GPS data more carefully. For this, however, it seems
that we need more sophisticated prediction models for future delays.
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