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Abstract

In the multi-modal route planning problem we are
given multiple transportation networks (e. g., pedes-
trian, road, public transit) and ask for a best integrated
journey between two points. The main challenge is that
a seemingly optimal journey may have changes between
networks that do not reflect the user’s modal prefer-
ences. In fact, quickly computing reasonable multi-
modal routes remains a challenging problem: Previous
approaches either suffer from poor query performance
or their available choices of modal preferences during
query time is limited. In this work we focus on comput-
ing exact multi-modal journeys that can be restricted
by specifying arbitrary modal sequences at query time.
For example, a user can say whether he wants to only
use public transit, or also prefers to use a taxi or walking
at the beginning or end of the journey; or if he has no
restrictions at all. By carefully adapting node contrac-
tion, a common ingredient to many speedup techniques
on road networks, we are able to compute point-to-point
queries on a continental network combined of cars, rail-
roads and flights several orders of magnitude faster than
Dijkstra’s algorithm. Thereby, we require little space
overhead and obtain fast preprocessing times.

1 Introduction

Research on route-planning algorithms in transporta-
tion networks has undergone a rapid development over
the last years. See [19] for an overview. Usually the net-
work is modeled as a directed graph G. While Dijkstra’s
algorithm can be used to compute a best route between
two nodes of G in almost linear time [26], it is too slow
for practical applications in real-world transportation
networks. They consist of several million nodes and
edges, and we expect almost instant results. Thus, over
the years a multitude of speedup techniques for Dijk-
stra’s algorithm were developed, all following a similar
paradigm: In a preprocessing phase auxiliary data is
computed which is then used to accelerate Dijkstra’s
algorithm in the query phase. The fastest techniques
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today can answer a single query within only a few mem-
ory accesses [1]. However, most of the techniques were
developed with one type of transportation network in
mind. In fact, the fastest techniques developed for road
networks heavily rely on structural properties of these
and their performance degrades significantly on other
networks [6, 10].

In the real-world the different modes of travel are
linked extensively, and realistic transportation scenarios
imply frequent modal changes. Even more so, with
the emergence of electric vehicles and their inherent
range restrictions, the choice between taking the car and
public transit will become more important. To solve
such scenarios we are interested in an integrated system
that can handle multiple transportation networks with
a single algorithm. Thereby it is crucial to respect a
user’s modal preferences: not every mode of transport
might be feasible to him at any point along the journey.
In general, the user has restrictions on the sequence of
transport modes. For example, some users might be
willing to take a taxi between two train rides if it makes
the journey quicker. Others prefer to use public transit
at a stretch. A realistic multi-modal route-planning
system must handle such constraints as a user input
for each query.

Related Work. For an overview on unimodal
speedup techniques, we direct the reader to [6, 19]. Most
techniques are composed of the following ingredients:
bidirectional search, goal-directed search [27, 30, 33,
42], hierarchical techniques [7, 8, 24, 28, 40], and
separator-based techniques [13, 14, 31]. Combinations
have been studied [10, 41]. Regarding multi-modal
route planning less work exists. An elegant approach
to restricting modal transfers is the label constrained
shortest paths problem (LCSPP) [34]: edges are labeled,
and the sequence of edge labels must be element of a
formal language (passed as query input) for any feasible
path. A version of Dijkstra’s algorithm can be used,
if the language is regular [5, 34]. An experimental
study of this approach, including basic goal-directed
techniques, is conducted in [4]. In [36] it is concluded
that augmenting preprocessing techniques for LCSPP
is a challenging task. A first efficient multi-modal
speedup technique, called Access-Node Routing (ANR),
has been proposed in [17]. It skips the road network



during queries by precomputing distances from every
road node to all its relevant access points of the public
transportation network. It has the fastest query times
of all previous multi-modal techniques which are in
the order of milliseconds. However, the preprocessing
phase predetermines the modal constraints that can be
used for queries. Also, it cannot compute short-range
queries and requires a separate algorithm to handle
them correctly. Another approach adapts ALT by
precomputing different node potentials depending on
the mode of transport, called SDALT [32]. It has fast
preprocessing, but both preprocessing space and query
times are high, and it also cannot handle arbitrary
modal restrictions as query input.

Our Contribution. In this work we present
UCCH, the first multi-modal speedup technique that
handles arbitrary mode-sequence constraints as input
to the query—a feature unavailable from previous tech-
niques. Unlike Access-Node Routing, it also answers
local queries correctly and requires significantly less pre-
processing effort. We revisit one technique, namely node
contraction, that has proven successful in road networks
in the form of Contraction Hierarchies, introduced by
Geisberger et al. [24]. By ensuring that shortcuts never
span multiple modes of transport, we extend Contrac-
tion Hierarchies in a sound manner. Moreover, we show
how careful engineering further helps our scenario. Our
experimental study shows that, unlike previous tech-
niques, we can handle an intercontinental instance com-
posed of cars, railways and flights with over 50 mil-
lion nodes, 125 million edges, and 30 thousand stations.
With only 557 MiB of data, we achieve query times that
are fast enough for interactive scenarios.

This work is organized as follows. Section 2 sets
necessary notation, summarizes graph models we use,
precisely defines the problem we are solving, and also re-
caps Contraction Hierarchies. Section 3 introduces our
new technique. Finally, Section 4 presents experiments
to evaluate our algorithm, while Section 5 concludes this
work and mentions interesting open problems.

2 Preliminaries

Throughout this work G = (V,E) is a directed graph
where V is the set of nodes and E ⊆ V × V the set of
edges. For an edge (u, v) ∈ E, we call u the tail and v

the head of the edge. The reverse graph
←−
G = (V,

←−
E )

of G is obtained from G by flipping all edges, i. e.,

(u, v) ∈ E iff (v, u) ∈ ←−E . Note that we use the terms
graph and network interchangeably.

To distinct between different modes of transport,
our graphs are labeled by node labels lbl : V → Σ and
edge labels lbl : E → Σ. Often Σ is called the alphabet

and contains the available modes of transport in G, for
example, road, rail, flight.

All edges in our graphs are weighted by periodic
time-dependent travel time functions f : Π → N0

where Π depicts a set of time points (think of it as
the seconds of a day). If f is constant over Π, we
call f time-independent. Respecting periodicity in a
meaningful way, we say that a function f has the FIFO
property if for all τ1, τ2 ∈ Π with τ1 ≤ τ2 it holds that
f(τ1) ≤ f(τ2) + (τ2 − τ1). In other words, waiting
never pays off. Moreover, the link operation of two
functions f1, f2 is defined as f1⊕f2 = f1 +(id +f1)◦f2,
and the merge operation min(f1, f2) is defined as the
element-wise minimum of f1 and f2. Note that to depict
the travel time function f(τ) of an edge e ∈ E, we
sometimes write len(e, τ), or just len(e) if it is clear
from the context that len(e, τ) is constant.

In time-dependent graphs there are two types of
queries relevant to this work: A time-query has as input
s ∈ V and a departure time τ . It computes a shortest
path tree to every node u ∈ V when departing at s at
time τ . In contrast, a profile-query computes a shortest
path graph from s to all u ∈ V , consisting of shortest
paths for all departure times τ ∈ Π.

Whenever appropriate, we use some notion of for-
mal languages. A finite sequence w = σ0σ1 . . . σk of
symbols σi ∈ Σ is called a word. A not necessarily fi-
nite set of words L is called formal language (over Σ).
A nondeterministic finite automaton (NFA) is a tuple
A = (Q,Σ, δ, S, F ) characterized by the set Q of states,
the transition relation δ ⊆ Q× Σ×Q, and sets S ⊆ Q
of initial states and F ⊆ Q of final states. A language
L is called regular iff there exists a finite automaton AL

such that AL accepts L.

2.1 Models. Following [17], our multi-modal graphs
are composed of different models for each mode of
transportation. We briefly introduce each model and
explain how they are combined.

In the road network, nodes model intersections and
edges depict street segments. We either label edges
by car for roads or foot for pedestrians. Our road
networks are weighted by the average travel time of the
street segment. For pedestrians we assume a walking
speed of 4.5 kph. Note that our road networks are
time-independent. Regarding the railway network, we
use the realistic time-dependent model [39]. It consists
of station nodes connected to route nodes. Trains
are modeled between route nodes via time-dependent
edges. Some station nodes are interconnected by time-
independent foot paths. See [39] for details. We
label nodes and edges with rail. Note that we also
use this model for bus networks. Finally, to model



flight networks, we use the time-dependent phase II
model [18]. It has small size and models airport
procedures realistically. Nodes and edges are labeled
with flight. Note that the travel time functions in our
networks are a special form of piecewise linear functions
that can be efficiently evaluated [15, 39]. Also all edges
in our networks have the FIFO property.

Merging the Networks. To obtain an integrated
multi-modal network G = (V,E), we merge the node
and edge sets of each individual network. Detailed
data on transfers between modes of transport was not
available to us. Thus, we heuristically add link edges
labeled link. More precisely, we link each station node
in the railway network to its geographically closest node
of the road network. We also link each airport node
of the flight network to their closest nodes in the road
and rail networks. Thereby we only link nodes that
are no more than distance δ apart, a parameter chosen
for each instance. The time to traverse a link edges is
computed from its geographical length and a walking
speed of 4.5 kph.

2.2 Path Constraints on the Sequences of
Transport Modes. Since the näıve approach of using
Dijkstra’s algorithm on the combined network G does
not incorporate modal constraints, we consider the La-
bel Constrained Shortest Path Problem (LCSPP) [5]:
each edge e ∈ E has a label lbl(e) assigned to it. The
goal is to compute a shortest s-t-path P where the word
w(P ) formed by concatenating the edge labels along P
is element of a language L, a query input.

Modeling sequence constraints is done by specifying
L. For our case, regular languages of the following
form suffice. The alphabet Σ consists of the available
transport modes. In the corresponding NFA AL, states
depict one or more transport modes. To model traveling
within one transport mode, we require (q, σ, q) ∈ δ
for those transport modes σ ∈ Σ that q represents.
Moreover, to allow transfers between different modes of
transport, states q, q′ ∈ Q, q 6= q′ are connected by link

labels, i. e., (q, link, q) ∈ δ. Finally, states are marked
as initial/final if its modes of transport can be used at
the beginning/end of the journey. Example automata
are shown in Figure 1.

We refer to this variant of LCSPP as LCSPP-MS
(as in Modal Sequences). In general, LCSPP is solvable
in polynomial time, if L is context-free. In our case, a
generalization of Dijsktra’s algorithm works [5].

2.3 Contraction Hierarchies (CH). Our algo-
rithm is based on Contraction Hierarchies [24]. Prepro-
cessing works by heuristically ordering the nodes of the
graph by an importance value (a linear combination of

link link
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foot
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(b) hierarchical.

Figure 1: Two example automata. In the bottom figure,
light edges are labeled as link.

edge expansion, number of contracted neighbors, among
others). Then, all nodes are contracted in order of as-
cending importance. To contract a node v ∈ V , it is
removed from G, and shortcuts are added between its
neighbors to preserve distances between the remaining
nodes. The index at which v has been removed is de-
noted by rank(v). To determine if a shortcut (u,w) is
added, a local search from u is run (without looking at
v), until w is settled. If len(u,w) ≤ len(u, v)+len(v, w),
the shortcut (u,w) is not added, and the corresponding
shorter path is called a witness.

The CH query is a bidirectional Dijkstra search op-
erating on G, augmented by the shortcuts computed
during preprocessing. Both searches (forward and back-
ward) go “upward” in the hierarchy: the forward search
only visits edges (u, v) where rank(u) ≤ rank(v), and
the backward search only visits edges where rank(u) ≥
rank(v). Nodes where both searches meet represent can-
didate shortest paths with combined length µ. The al-
gorithm minimizes µ, and a search can stop as soon
as the minimum key of its priority queue exceeds µ.
Further acceleration techniques, such as stalling-on-
demand [24], can be applied.

Partial Hierarchy. If the preprocessing is aborted
prematurely, i. e., before all nodes are contracted, we ob-
tain a partial hierarchy (PCH). Let rank(v) =∞ iff v is
never contracted, then the same query algorithm as for
Contraction Hierarchies is applicable and yields correct
results. We call the subgraph of all uncontracted nodes
the core, and the remaining (contracted) subgraph the
component. Note that both the core and the component
can contain shortcuts not present in the original graph.



Performance. Both preprocessing and query per-
formance of CH depend on the number of shortcuts
added. It works well if the network has a pronounced hi-
erarchy, i. e., far journeys eventually converge to a “free-
way subnetwork” which is of a small fraction in size
compared to the total graph [2]. Note that if comput-
ing a complete hierarchy produces too many shortcuts,
one can always abort early and compute a partial hi-
erarchy. A possible stopping criterion is the maximum
node degree encountered during the contraction process.

3 Our Approach

We now introduce our basic approach and show how
CH can be used to compute shortest path with restric-
tions on sequences of transport modes. We first ar-
gue that applying CH on the combined multi-modal
graph G without careful consideration either yields in-
correct results to LCSPP-MS or predetermines the au-
tomaton A during preprocessing. We then introduce
UCCH: a practical adaption of Contraction Hierarchies
to LCSPP-MS that enables arbitrary modal sequence
constraints as query input. Further improvements that
help accelerating both preprocessing and queries are
presented in Section 3.3.

3.1 Contraction Hierarchies for Multi-Modal
Networks. Let G = (V,E) be a multi-modal network.
Recall that G is a combination of time-independent
and time-dependent networks (for example, of road and
rail), hence, contains edges having both constants and
travel time functions associated with them. Apply-
ing CH to G already requires some engineering effort:
shortcuts may represent paths containing edges of differ-
ent type. In order to compute the shortcuts’ travel time
functions, these edges have to be linked, resulting in in-
homogeneous functions that slow down both preprocess-
ing and query performance. More significantly, when a
path P = (e1, . . . , ek) is composed into a single shortcut
edge e′, its labels need to be concatenated into a super
label lbl(e′) = lbl(e1) · · · lbl(ek). In particular, if there
are subsequent edges ei, ej in P where lbl(ei) 6= lbl(ej),
the shortcut induces a modal transfer. Running a query
where this particular mode change is prohibited poten-
tially yields incorrect results: the shortcut must not
be used but the label constrained path (i. e. the one
without this transfer) may have been discarded during
preprocessing by the witness search (see Section 2.3).
Note that the partial time-dependent nature of G fur-
ther complicates things. A shortcut e′ = (u, v) needs
to represent the travel-time profile from u to v, that is,
the underlying path P depends on the time of day. As
a consequence, the super label of e′ is time-dependent
as well.

If the automaton A is known during preprocessing,
we can modify CH preprocessing to yield correct query
results with respect toA. While contracting node v ∈ G
and thereby considering to add a shortcut e′ = (u,w),
we look at its super label lbl(e′) = (lbl1, . . . , lblk). To
determine if e′ has to be inserted, we run multiple
witness searches as follows: for each state q ∈ A where
q represents lbl(v), we run a multi-modal profile-search
from u (ignoring v). We run it with q as initial state
and all those states q′ ∈ A as final state, where q′ is
reachable from q in A by applying lbl(e′). Only if for
all these profile-searches dist(w) ≤ len(e′) holds, the
shortcut e′ is not required: for every relevant transition
sequence of the automaton, there is a shorter path in
the graph. Note that shortcuts e′ = (u,w) may be
required even if an edge from u to w already existed
before contraction. This results in parallel edges for
different subsequences of the constraint automaton.

This approach which we call State-Dependent
CH (SDCH) has some disadvantages, however. First,
witness search is slow and less effective than in the uni-
modal scenario, resulting in many more shortcuts. This
hurts preprocessing and query performance. Adding to
it the more complicated data structures required for in-
homogeneous travel time functions and arbitrary label
sequences, SDCH combines challenges of both Flexi-
ble CH [23] and Timetable CH [22]. As a result we ex-
pect a significant slowdown over unimodal CH on road
networks. But most notably, SDCH predetermines the
automaton A during preprocessing.

3.2 UCCH: Contraction for User-Constrained
Route Planning. We now introduce User-
Constrained Contraction Hierarchies (UCCH). Unlike
SDCH, it can handle arbitrary sequence constraint
automata during query and has an easier witness
search. We first turn toward preprocessing before we
go into detail about the query algorithm.

Preprocessing. The main reason behind the dis-
advantages discussed in Section 3.1 is the computa-
tion of shortcuts that span over boundaries of different
modal networks. Instead, let Σ be the alphabet of la-
bels of a multi-modal graph G. We now process each
subnetwork independently. We compute—in no partic-
ular order—a partial Contraction Hierarchy restricted
to the subgraph Glbl = (Vlbl, Elbl) (for every lbl ∈ Σ).
Here, Glbl is exactly the original graph of the particu-
lar transportation mode (before merging). We keep the
contraction order with the exception of transfer nodes:
nodes which are incident to at least one edge labeled
link in G. We fix the rank of all such nodes v to
rank(v) = ∞, i. e., they are never contracted. Note
that all other nodes have only incident edges labeled by



lbl in G. As a result, shortcuts only span edges within
one modal network. Hence, we neither obtain inhomo-
geneous travel time functions nor “mixed” super labels.
We set the label of each shortcut edge e′ to lbl(e), where
e is an arbitrary edge along the path, e′ represents.

To determine if a shortcut e′ = (u,w) is required
(when contracting a node v), we restrict the witness
search to the modal subnetwork Glbl of v. Restricting
the search space of witness searches does not yield
incorrect query results: only too many shortcuts might
be inserted, but no required shortcuts are omitted. In
fact, this is a common technique to accelerate CH
preprocessing [24]. Note that broadening the witness
search beyond network boundaries is prohibitive in our
case: it may find a shorter u-v-path using parts of other
modal networks. However, such a path is not necessarily
a witness if one of these other modes is forbidden during
the query. Thus, we must not take it into account to
determine if e′ can be dropped.

Our preprocessing results in a partial hierarchy
for each modal network of G. Its transfer nodes are
not contracted, thus, can be interpreted as staying
at the top of the hierarchy. Recall that we call the
subgraph induced by all nodes v with rank(v) =∞ the
core. Because of the added shortcuts, the shortest path
between every pair of core nodes is also fully contained
in the core. As a result, we achieve independence from
the automaton A during preprocessing.

A Practical Variant. Contraction is independent
for every modal network of G: we can use any combi-
nation of partial, full or no contraction. Our practi-
cal variant only contracts time-independent modal net-
works, that is, the road networks. Contracting the
time-dependent networks is much less effective. Re-
call that we do not contract station nodes as they have
incident link edges. Applying contraction only on the
non-station nodes, however, yields too many shortcuts
(see Figure 2, cp. [22]). It also hides information en-
coded in the timetable model (such as railway lines),
further complicating query algorithms [11].

Query. Our query algorithm combines the concept
of a multi-modal Dijkstra algorithm with unimodal CH.
Let s, t ∈ V be source and target nodes and A some
finite automaton wrt. LCSPP-MS. Our query algorithm
works as follows. First, we initialize distance values for
all pairs of (v, q) ∈ V ×A with infinity. We now run a
bidirectional Dijkstra search from s and t. Each search

runs independently and maintains priority queues
−→
Q

and
←−
Q of tuples (v, q) where v ∈ V and q ∈ A.

We explain the algorithm for the forward search; the

backward search works analogously. The queue
−→
Q is

ordered by distance and initialized with (s, q) for all
initial states q in A (the backward queue is initialized

(a) Input graph.
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(b) Graph after contraction.

Figure 2: Contracting only route nodes in the realistic
time-dependent rail model [39]. The bottom row of
nodes are station nodes, while the top row are route
nodes contracted in the order depicted by their labels.
Grey edges represent added shortcuts. Note that these
shortcuts are required as they incorporate different
transfer times (for boarding and exiting vehicles at
different stations).

wrt. final states). Whenever we extract a tuple (v, q)
fromQ, we scan all edges e = (v, w) in G. For each edge,
we look at all states q′ in A that can be reached from q
by lbl(e). For every such pair (w, q′) we check whether
its distance is improved, and update the queue if
necessary. To use the preprocessed data, we consider the
graph G, augmented by all shortcuts computed during
preprocessing. We run the aforementioned algorithm,
but when scanning edges from a node v, the forward
search only looks at edges (v, w) where rank(w) ≥
rank(v). Similarly, the backward search only looks at
edges (v, w) where rank(v) ≥ rank(w). Note that by
these means we automatically search inside the core
whenever we reach the top of the hierarchy. Thereby
we never reinitialize any data structures when entering
the core like it is typically the case for core-based
algorithms, e. g., Core-ALT [19]. The stopping criterion
carries over from basic CH: a search stops as soon as
its minimum key in the priority queue exceeds the best
tentative distance value µ. We also use stall-on-demand,
however, only on the component.

Intuitively, the search can be interpreted as follows.
We simultaneously search upward in those hierarchies
of the modal networks that are either marked as ini-



tial or as final in the automaton A. As soon as we
hit the top of the hierarchy, the search operates on the
common core. Because we always find correct shortest
paths between core nodes in any modal network, our
algorithm supports arbitrary automata (wrt. LCSPP-
MS) as query input. Note that our algorithm implicitly
computes local queries which use only one of the net-
works. It makes the use of a separate algorithm for
local queries, as in [17], unnecessary.

Handling Time-Dependency. Some of the net-
works in G are time-dependent. Weights of time-
dependent edges (u, v) are evaluated for a departure
time τ . However, running a reverse search on a time-
dependent network is non-trivial, since the arrival time
at the target node is not known in advance. Several
approaches, such as using the lower-bound graph for
the reverse search, exist [9, 16], but they complicate the
query algorithm. Recall that in our practical variant we
do not contract any of the time-dependent networks,
hence, no time-dependent edges are contained in the
component. This makes backward search on the com-
ponent easy for us. We discuss search on the core in the
next section.

3.3 Improvements. We now present several im-
provements to our algorithm, some of which also ap-
ply to CH. Recall that whenever we contract a modal
network, we never contract transfer nodes, even if they
were of low importance in the context of the network.
As a result, the number of added shortcuts may increase
significantly. Thus, we stop the contraction process as
soon as the maximum node degree exceeds a value α. By
varying α, we trade off the number of core nodes and
the number of core edges: higher values of α produce a
smaller core but with more shortcut edges. We evaluate
a good value of α experimentally.

Due to the higher average node degree compared to
unimodal CH, the search algorithm has to look at more
edges. Thus, we improve performance of iterating over
incident edges of a node v by reordering them locally
at v: we first arrange all outgoing edges, followed by
all bidirected edges, and finally, all incoming edges. By
these means, the forward respective backward search
only needs to look at their relevant subsets of edges at v.
The same optimization is applied to the stalling routine.
Preliminary experiments revealed that edge reordering
improves query performance up to 20 %.

To improve the cache hit rate for the query algo-
rithm, we also reorder nodes such that adjacent nodes
are stored consecutively with high probability. We use a
DFS-like algorithm to determine the ordering [12]. Be-
cause most of the time is spent on the core, we also
move core nodes to the front. This improves query per-

formance up to a factor of 2.
Recall that a search stops as soon as its minimum

key from the priority queue exceeds the best tentative
distance value µ. This is conservative, but necessary
for CH (and UCCH) to be correct. However, UCCH
spends a large fraction of the search inside the core. We
can easily expand road and transfer edges both forward
and backward, but because of the conservative stopping
criterion, many core nodes are settled twice. To reduce
this amount, we do not scan edges of core nodes v,
where v has been settled by both searches and did not
improve µ. A path through v is provably not optimal.
This increases performance by up to 50 %. Another
alternative is not applying bidirectional search on the
core at all. The forward search continues regularly,
while the backward search does not scan edges incident
to core nodes. This approach turns out most effective
with a performance increase by a factor of 2.1.

Finally, automata are used to model sequence con-
straints, however, by definition their state may only
change when traversing link edges. In particular, when
searching inside the component, there is never a state
transition (recall that all link edges are inside the core).
Thus, we use the automaton only on the core. We start
with a regular unimodal CH-query. Whenever we are
about to insert a core node v into the priority for the
first time on a branch of the shortest path tree, we cre-
ate labels (v, q) for all initial/final states q (regarding
forward/backward search). Because the amount of set-
tled component nodes on average is small compared to
the total search space, we do not observe a performance
gain. However, on large instances with complicated
query automata we save several gigabytes of RAM dur-
ing query by keeping only one distance value for each
component node. Recall that component nodes consti-
tute the major fraction of the graph.

Combining all improvements yields a speedup of up
to factor 4.9. (See Appendix A for detailed figures.)

4 Experiments

We conducted our experiments on one core of an Intel
Xeon E5430 processor running SUSE Linux 11.1. It is
clocked at 2.66 GHz, has 32 GiB of RAM and 12 MiB of
L2 cache. The program was compiled with GCC 4.5,
using optimization level 3. Our implementation is
written in C++ using the STL and Boost at some
points. As a priority queue we use a 4-ary heap.

We assemble a total of six multi-modal networks
where two are imported from [17]. Their size figures are
reported in Table 1. For ny-road-rail, we combine
New York’s foot network with the public transit network
operated by MTA [35]. We link bus and subway
stops to road intersections that are no more than



Table 1: Comparing size figures of our input instances. The bottom two instances are taken from [17].
Public Transportation Road

network stations connections nodes edges density

ny-road-rail 16 897 2 054 896 579 849 1 527 594 1 : 56
de-road-rail 6 822 489 801 5 055 680 12 378 224 1 : 747
europe-road-rail 30 517 1 621 111 30 202 516 72 586 158 1 : 1 133
wo-road-rail-flight 31 689 1 649 371 50 139 663 124 625 598 1 : 1 846

de-road-rail(long) 498 16 450 5 055 680 12 378 224 1 : 10 711
wo-road-flight 1 172 28 260 50 139 663 124 625 598 1 : 139 277

500 m apart. The de-road-rail network combines
the pedestrian and railway networks of Germany. The
railway network is extracted from the timetable of the
winter period 2000/01. It includes short and long
distance trains, and we link stations using a radius
of 1.5 km. The europe-road-rail network combines
the road (as in car) and railway networks of Western
Europe. The railway network is extracted from the
timetable of the winter period 1996/97 and stations
are linked within 5 km. The wo-road-rail-flight

network is a combination of the road networks of
North America and Western Europe with the railway
network of Western Europe and the flight network of
Star Alliance and One World. The flight networks
are extracted from the winter timetable 2008. As
radius we use 5 km. Both de-road-rail(long) and
wo-road-flight stem from [17]. The data of the
Western European and North American road networks
(thus Germany and New York) was kindly provided to
us by PTV AG [38] for scientific use. The timetable
data of New York is publicly available through General
Transit Feeds [25], while the data of the German and
European railway networks was kindly provided by
HaCon [29]. Our instances have varying fractional size
of their public transit parts. We call the fraction of
linked nodes in a subgraph density (see last column of
Table 1). Our densest network is ny-road-rail, which
also has the highest number of connections. On the
other hand, de-road-rail(long) and wo-road-flight

are rather sparse. However, we include them to compare
our algorithm to Access Node Routing (ANR).

We use the following automata as query input. The
foot-and-rail automaton allows either walking, or
walking, taking the railway network and walking again.
Similarly, the car-and-rail automaton uses the road
network instead of walking, while the car-and-flight

automaton uses the flight network instead of the rail-
way network. The hierarchical automaton is our
most complicated automaton. It hierarchically com-
bines road, railways and flights (in this order). All
modal sequences are possible, except of going up in the

hierarchy after once stepping down. For example, if one
takes a train after a flight, it is impossible to take an-
other flight. Finally, the everything automaton allows
arbitrary modal sequences in any order. See Figure 1 for
transition graphs of foot-and-rail and hierarchical.

We evaluate both preprocessing and query perfor-
mance. The contraction order is always computed ac-
cording to the aggressive variant from [24]. We report
the time and the amount of computed auxiliary data.
Queries are generated with source, target nodes and de-
parture times uniformly picked at random. For Dijkstra
we run 1 000 queries, while for UCCH we run a super-
set of 1 000 000 queries. We report the average number
of: (1) nodes extracted from the priority queue (settled
nodes), (2) priority queue update operations (relaxed
edges), (3) touched edges, (4) the average query time,
and (5) the speedup over Dijkstra. Note that we only
report the time to compute the length of the shortest
path. Unpacking of shortcuts can be done efficiently in
less than a millisecond [24].

Evaluating Maximum Degree Limit. This ex-
periment evaluates preprocessing performance with
varying maximum degree α. We abort contraction when
a node has degree greater than α. Table 2 shows prepro-
cessing and query figures on de-road-rail. We use an
automaton that does not use public transit edges. With
higher values of α more nodes are contracted, resulting
in higher preprocessing time and more shortcuts (we re-
port them as a fraction of the input’s size). At the same
time, less nodes (but with higher degree) remain in the
core. Setting α =∞ is infeasible. The amount of short-
cuts explodes, and preprocessing does not finish within
reasonable time. Interestingly, the query time decreases
(with smaller core size) up to α ≈ 60 and then increases
again. Though we settle less nodes, the increase in
shortcuts results in more touched edges during query,
that is, edges the algorithm has to iterate when settling
a node. We conclude that for de-road-rail the trade-
off between number of core nodes and added shortcut
edges is optimal at α = 60, hence, we use this value in
subsequent experiments. Accordingly, we determine α



Table 2: Comparing preprocessing performance of UCCH on de-road-rail with varying maximum degree limit.
For queries we use the foot automaton. We also report numbers for unconstrained unimodal CH.

Preprocessing Query
max core- avg core- shortcut- time settled relaxed touched time

degree nodes degree edges [min] nodes edges edges [ms]

UCCH

29 25 629 11.0 42.5 % 7 12 886 23 741 142 526 4.79
39 17 064 14.2 43.0 % 8 8 611 17 592 123 275 3.23
45 15 495 15.5 43.2 % 9 7 833 16 508 121 852 3.04
60 11 337 22.5 44.0 % 14 5 795 14 002 130 801 2.81
79 9 728 30.3 44.7 % 18 5 032 13 536 152 577 3.06
97 9 138 35.7 45.1 % 20 4 770 13 638 169 629 3.25

167 8 101 56.3 46.6 % 42 4 357 14 837 243 132 4.37

PCH 29 11 337 12.7 41.7 % 7 5 910 11 983 75 194 2.00
PCH 31 6 764 14.9 41.8 % 8 3 640 7 980 54 199 1.33
CH 48 — — 41.8 % 9 677 1 290 16 549 0.32

for all our instances. Note that α has little effect on
the total number of shortcuts, but preprocessing time
increases by factor 6 and query times vary up to 70 %.

Comparison to Unimodal CH. In Table 2 we
also compare UCCH to CH when run on the unimodal
road network. Computing a full hierarchy results in
a maximum degree of 48, and query times are about
a factor 9 faster. Since UCCH does not compute a
full hierarchy by design, we evaluate two partial CH
hierarchies: The first stops when the core reaches a size
of 11 337—equivalent to the optimal core size of UCCH.
We observe a query performance almost comparable to
UCCH (slightly faster by 45 %). The second partial
hierarchy stops with a core size of 6 764 which is
equal to the number of transfer nodes in the network
(i. e., the smallest possible core size on this instance
for UCCH). Here, CH is a factor of 2.1 faster than
UCCH. Recall that UCCH must not contract transfer
nodes. In road networks these are usually unimportant:
Long-range queries do not pass many railway stations
or bus stops in general, which explains that UCCH’s
hierarchy is less pronounced. However, for multi-modal
queries transfer nodes are indeed very important, as
they constitute the interchange points between different
networks. To enable arbitrary automata during query,
we overestimate their importance by not contracting
them at all, which is reflected by the (relatively small)
difference in performance compared to CH.

Preprocessing. Table 3 shows preprocessing fig-
ures for UCCH on all our instances. Besides the maxi-
mum degree, we evaluate the core in terms of total and
fractional number of core nodes, the average degree and
the amount of added shortcuts. Added shortcuts are re-
ported as percentage of all road edges and in total MiB.
We observe that the preprocessing effort correlates with
the graph size. On the small ny-road-rail instance it

takes less than a minute and produces 8 MiB of data. On
our largest instance, wo-road-rail-flight, we need
1.5 hours and produce 542 MiB of data. Note that be-
cause the size of the core depends on the size of the
public transportation network, we obtain a much higher
ratio of core nodes on ny-road-rail (1 : 53) than we do,
for example, on wo-road-rail-flight (1 : 1 248).

Comparing the preprocessing effort of UCCH to
scaled figures of ANR, we observe that UCCH is twice
as fast and produces significantly less amount of data:
on de-road-rail(long) by a factor of 8.4, while on
wo-road-flight, ANR requires 14 GiB of space. Here,
UCCH only uses 542 MiB, a factor of 26. Concluding,
UCCH outperforms ANR in terms of preprocessing
space and time.

Query performance. In this experiment we eval-
uate the query performance of UCCH and compare it to
Dijkstra and ANR (where applicable). Figures are pre-
sented in Table 4. We observe that we achieve speedups
of several orders of magnitude over Dijkstra, depend-
ing on the instance. Generally, UCCH’s speedup over
Dijkstra correlates with the ratio of core nodes after pre-
processing (thus, indirectly with the density of transfer
nodes): the sparser our networks are interconnected,
the higher the speedups we achieve. On our densest
network, ny-road-rail, we have a speedup of 10, while
on wo-road-flight we achieve query times of less than
a millisecond—a speedup of over 45 000. Note that most
of the time is spent inside the core (particularly, in the
public transit network), which we do not accelerate. Ap-
pendix A contains a detailed query time distribution
analysis. Comparing UCCH to ANR, we observe that
query times are in the same order of magnitude, UCCH
being slightly faster. Note that we achieve these running
times with significantly less preprocessing effort.



Table 3: Preprocessing figures for UCCH and Access-Node Routing on the road subnetwork. Figures for the latter
are taken from [17]. We scale the preprocessing time with respect to running time figures compared to Dijkstra.

UCCH Access-Node
max core nodes avg core- shortcuts shortcuts time space time

network degree total ratio degree percent [MiB] [min] [MiB] [min]

ny-road-rail 36 10 864 1 : 53 7.7 47.1 % 8 < 1 — —
de-road-rail 60 11 337 1 : 446 22.5 44.0 % 62 14 — —
europe-road-rail 95 40 153 1 : 752 24.4 38.9 % 323 42 — —
wo-road-rail-flight 115 40 265 1 : 1 248 27.5 39.1 % 557 162 — —

de-road-rail(long) 63 1 148 1 : 4 403 31.2 42.2 % 60 14 504 26
wo-road-flight 98 694 1 : 72 247 36.5 38.0 % 542 89 14 050 184

Table 4: Query performance of UCCH compared to plain multi-modal Dijkstra and Access-Node Routing. Figures
for the latter are taken from [17]. We scale the running time with respect to Dijkstra.

Dijkstra Access-Node UCCH
settled time settled time speed- settled time speed-

network automaton nodes [ms] nodes [ms] up nodes [ms] up

ny-road-rail foot-and-rail 455 328 250 — — — 50 109 25.12 10
de-road-rail foot-and-rail 2 668 177 2 053 — — — 75 333 38.11 54
europe-road-rail car-and-rail 30 265 558 24 559 — — — 338 014 179.32 137
wo-road-rail-flight hierarchical 36 454 341 36 207 — — — 455 279 236.90 153

de-road-rail(long) foot-and-rail 2 735 426 2 075 13 524 3.45 602 12 531 3.35 619
wo-road-flight car-and-flight 36 582 904 33 862 4 200 1.07 31 551 1 654 0.73 46 386

5 Conclusion

In this work we introduced UCCH: the first, fast multi-
modal speedup technique that handles arbitrary modal
sequence constraints at query time—a problem consid-
ered challenging before. Besides not determining the
modal constraints during preprocessing, its advantages
are small space overhead, fast preprocessing time and
the ability to implicitly handle local queries without
the need for a separate algorithm. Its preprocessing
can handle huge networks of intercontinental size with
many more stations and airports than those of previ-
ous multi-modal techniques. For future work we are
interested in augmenting our approach to more general
scenarios such as profile or multi-criteria queries. We
also like to further accelerate search on the uncontracted
core—especially on the rail networks. Moreover, we are
interested to improve the contraction order. In particu-
lar, we like to use ideas from [17] to enable contraction
of some transfer nodes in order to achieve better results,
especially on more densely interlinked networks.
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A Further Experiments

In this appendix we present two further experiments.
We analyze our improvements to UCCH and present
more detailed figures of UCCH’s query performance.

A.1 Improvements. In Table 5 we report figures on
the improvements to UCCH described in Section 3.3.
For our two biggest networks, we provide the number
of settled nodes and the query time for several com-
binations of improvements. The first row (none) re-
ports results for the basic version of UCCH. The other
rows use: reordered nodes (rn), reordered edges (re),
improved bi-directional search on the core (bi), and uni-
directional search on the core (fo), that is, no backward
search is performed on the core. Note that from the
number of settled nodes we can deduce which of the im-
provements impact cache efficiency and which impact
the search space.

A.2 In-Depth Analysis of Query Performance.
Table 6 reports in-depth figures for the UCCH query.

We see that a very large fraction of the query is spent
on the public transportation part of the multi-modal
network: up to 91 % of the settled nodes and up to
85 % of query time. Recall that we do not further
accelerate the search on the core. Interestingly, UCCH
is slightly faster (up to a factor of 2) on the timetable
subnetworks when compared to Dijkstra. UCCH settles
fewer nodes in total, which helps cache performance on
the public transit part. When we compare the time
spent on the road network (component and core) of
the de-road-rail instance with the figures of Table 2
(where we use the same instance but with the smaller
foot automaton), we observe that the foot-and-rail

automaton yields a factor 2 slowdown. The reason is
that the foot-and-rail automaton actually has two
“foot-states” (cf. Figure 1), and thus, has to do twice
the work on the road subnetwork.



Table 5: Detailed analysis of the impact on query performance by our improvements (cf. Section 3.3). We show
figures for reordering nodes (rn), reordering edges (re), improved bidirectional search (bi), and only forward search
on the core (fo).

settled time speed-
network automaton improvement nodes [ms] up

europe-road-rail car

none 49 069 67.76 —
rn 49 069 34.30 2.0
rn,re 49 069 28.70 2.4
rn,re,bi 31 995 18.91 3.6
rn,re,fo 24 586 13.76 4.9

wo-road-rail-flight car

none 36 942 52.91 —
rn 36 942 27.20 1.9
rn,re 36 942 22.83 2.3
rn,re,bi 30 868 19.22 2.8
rn,re,fo 18 553 10.98 4.8

Table 6: In-depth analysis of UCCH’s query time. We report the distribution of query time among the particular
subnetworks and compare it to Dijkstra.

Dijkstra UCCH
settled time settled time speed-

network automaton subgraph nodes [ms] nodes [ms] up

ny-road-rail foot-and-rail

road-comp. — — 225 — —
road-core 415 989 227.45 10 262 5.31 43
rail 39 339 22.55 39 339 19.81 1.1

de-road-rail foot-and-rail

road-comp. — — 173 — —
road-core 2 599 364 1991.3 6 678 5.60 336
rail 68 813 61.73 68 813 32.51 1.9

europe-road-rail car-and-rail

road-comp. — — 206 — —
road-core 29 973 823 24 250 48 965 34.73 698
rail 291 735 309.26 291 735 144.59 2.1

wo-road-rail-flight hierarchical

road-comp. — — 214 — —
road-core 36 059 431 35 794 64 509 43.45 767
rail 393 927 410.90 393 927 192.60 2
flight 982 1.90 928 0.86 2.1


